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On the stability of a spinning top containing liquid 

By K. STEWARTSON 
Department of Mathematics, The Durham Colleges in the University of Durham 

WITH AN APPENDIX BY G. N. WARD 

(Received 26 September 1958) 

The stability of a heavy top, containing a cylindrical cavity partly full of liquid, 
for small displacements from the sleeping position is studied. It is shown theo- 
retically that instability can occur when any one of the periods of free oscillation 
of the liquid, which are doubly infinite in number, is sufficiently near to the period 
of nutation of the empty top. In  experiments carried out by Prof. Ward, only the 
two principal instabilities could be distinguished. 

1. Introduction 
Consider an axisymmetrical solid top of mass M rotating about a fixed point 

0 of its axis at a distance d from its centre of gravity G .  It is well known that the 
top is stable in a sleeping position with G vertically above 0 provided that 

L2Q2 > 4MgdT, (1.1) 

where L, T are the moments of inertia of the top about longitudinal and trans- 
verse axes through 0 and Q is the angular velocity of the top about OQ. 

If, however, the top has a cavity containing fluid, this simple criterion is 
no longer adequate. It was in fact shown by Kelvin (1877) that the top could 
be made unstable by choosing a suitable cavity. He exhibited a thin-walled 
spheroidal top full of liquid. Originally its shape was just oblate and it was stable 
in the sleeping position if spun fast enough. However, on hammering it into a 
slightly prolate form and releasing it from the sleeping position, it became 
violently unstable to the extent of damaging the bearings on which it was 
spinning. The mathematical explanation of this phenomemon was given by 
Greenhill (1880). He assumed that the fluid inside the top was rotating with the 
casing as if solid to begin with, and studied the perturbations in the motion of the 
fluid consequent to a small disturbance being applied to the top. The perturbed 
motion produces pressure variations on the inner surface of the casing leading to 
a couple which may augment the destabilizing couple due to gravity. However, 
the new couple is proportional to Q2, and so it is possible that no matter how 
rapidly the top is rotated it will still be unstable. It is thus a different kind of 
instability from that occurring with a solid top, which can always be removed by 
choosing a sufficiently high angular velocity. In  particular, Greenhill was able 
to show that when the casing has negligible mass and is pivoted a t  the centre of 
the cavity, the top is unstable if a < G < 3a, where 2a, 2a, 2c are the lengths of the 

37 Fluid Mech. 5 



5713 K.  Xtewartson 

principal axes of the spheroidal cavity. As the mass of the casing is increased, the 
unstable range of c is narrowed until in the limit body instability occurs at only 
one value of c given by 

c2 - a2 
c +a2’ Tnu = 2 

where 27r/Ck~n, is the period of nutation of the top when the cavity is empty. 
Similar results have been obtained by Hough (1898) when the cavity is 

ellipsoidal with one principal axis along the axis of symmetry of the empty top. 
The restriction that the centre of the cavity coincide with the centre of rotation, 
which was assumed by all three writers mentioned so far, has been removed in 
unpublished work by S. N. Barua, E. A. Milne and the present author. The 
modification necessary is not difficult and does not affect the general nature of 
the theory. 

In  practice, however, it  is difficult to ensure that the cavity in the top is com- 
pletely full of liquid; accordingly, it  is of interest to study the top’s stability when 
the cavity is only partly full. The liquid now has a free surface whose shape 
depends on the relative strength of the gravitational and centrifugal forces. In  
this paper we shall assume that the top is rotating sufficiently rapidly that the 
gravitational forces may be neglected, so that the free surface is taken to be a 
cylinder parallel to the axis of symmetry. The condition to be satisfied is 
a2Q2 9 gc, where a, c are now representative lengths in the cavity across and 
along the axis of symmetry. 

The gain in simplicity obtained by choosing a spheroidal cavity, which is so 
clear in Greenhill’s work, is now lost. Instead we shall suppose that the cavity is 
a finite cylinder, whereupon the boundary conditions take on a particularly con- 
venient form and lead to a comparatively simple solution. This problem has also 
been considered by Narimanov (1957) who assumes, however, that the cavity is 
nearly empty and neglects the variation of the velocities with r,  the distance from 
the axis. No results comparable with those of the present paper were given, but 
it is likely that Narimanov’s assumption is very restrictive. 

It is assumed throughout the paper that the liquid is compressible and inviscid, 
and is initially rotating with the top as if solid. Strictly speaking, an inviscid 
liquid cannot be given vorticity by any motion of its boundaries, and it may be 
argued that for consistency the liquid should be assumed to be at rest initially 
inside the cavity. Such an approach has been used by Chetayev (1957). How- 
ever, no real liquid is completely inviscid, and so any liquid will be dragged round 
to some extent by the rotating casing. From considerations of diffusivity, the 
liquid in the top can be expected to rotate substantially as if solid after a time of 
the order of a2/v, where a is a representative length and v the kinematic viscosity 
of the liquid. Chetayev’s theory may then be thought of as applying at the 
initial stages of the motion of the top. As the liquid slowly speeds up, acquiring 
vorticity from the motion of the casing, the criteria for instability will change, 
tending ultimately to those of the present paper. 

The stability equation for a top with a spheroidal cavity completely full of 
liquid is particularly simple, leading to a single range of values of c/a in which the 
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top is unstable. When the cavity is a cylinder of length 2c and radius a, with or 
without an air space, it  is found that the stability equation is much more com- 
plicated, and leads to an enumerable infinity of ranges of values of c/a in any of 
which the top is unstable. The total length of all these ranges is probably of the 
same order as the length of the single range occurring with a spheroidal cavity; 
the fragmentation means that instability is liable to occur unexpectedly, on 
making apparently trivial changes in the properties of the top. 

The reason is that in general the liquid in the cavity has an infinite number of 
normal modes, each having a different period of oscillation. The motion of the 
liquid in a normal mode gives rise to a fluctuating couple on the casing of the top 
which acts as a disturbing force on the motion of the solid part of the top. There 
is also a reverse mechanism in which the motion of the casing induces a motion of 
the liquid in the cavity. Instability occurs when the period of nutation of the 
casing is sufficiently near to any one of the periods of normal modes of the liquid. 
It turns out that the period of precession is not directly associated with instability. 
The theory of the cylindrical cavity is an example of this argument. The com- 
pletely filled spheroidal cavity is a special case, however, because although there 
are an infinite number of normal modes of oscillation of the liquid, in only one is 
there induced a resultant couple on the casing. Further, the motion of the casing 
induces only one normal mode of oscillation of the liquid. Hence, instead of an 
infinite number of resonances, there is only one; but, on the other hand, i t  has 
a broader band-width than any of the corresponding resonances for another 
shape of cavity. If the spheroidal cavity is not completely filled, these special 
considerations no longer apply, and presumably fragmentation of the band- 
width again occurs although the problem is too difficult to solve completely at 
present. 

Experiments to check the theory of the present paper were carried out by 
Prof. Ward who discusses them in the Appendix. He was able to confirm the 
presence of the principal mode of resonance, but found that its band-width wm 
much larger than predicted by the theory. One other mode of resonance was 
detected, but the apparatus apparently was not sufficiently sensitive to detect 
any more of the weak secondary modes. 

2. Equations of motion and boundary conditions 
Suppose that in dynamic equilibrium the top is rotating about a fixed point 0 

on its axis of symmetry; it has an angular velocity i.2 about its axis of symmetry 
which is vertical and the centre of gravity of the top is above 0. The top contains 
a cylindrical cavity of radius a and length 2c, whose axis is the axis of symmetry 
and whose centre is at a distance h from 0. It is partly filled with a volume 
2nc(a2 - b2) of inviscid liquid of density p which is rotating with the top as if solid. 
Thus, when the conclusions of the theory are compared with experiment, we 
must assume that before being disturbed the top has been rotating sufficiently 
long for the liquid to have taken up its angular velocity, but that in the subse- 
quent disturbed motion viscosity may be neglected. Further, it  is assumed that 
gravitational forces in the liquid may be neglected in comparison with the 
centrifugal forces. The gravitational forces on the solid casing of the top are not 
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negligible, however, and so the assumption is equivalent to saying that the mass 
of liquid is small compared with the mass of the casing. There is no formal 
difficulty in including the effect of gravitational forces provided that the inner 
surface of the liquid is effectively a cylinder concentric with the cavity, i.e. 
a2Q2 9 gc, where g is gravity. 

It is convenient to introduce two systems of rotating orthogonal triads each 
with origin 0: (a) the triad Oxyz in which Oz is vertically upwards and Ox, Oy 
rotate about it with angular velocity Q; (b )  the triad Ox'y'z' in which Oz' lies 
along the axis of symmetry and Ox', Oy' rotate about it with angular velocity SZ. 
The components of a property with respect to Ox'y'z' are distinguished from the 
components of the same property with respect to Oxyz by primes. 

Let there be a small disturbance in the motion of the top in which Oz' has at 
any time direction cosines (Z,m,n) with respect to Oxyz. Since in equilibrium 
1 = m = 0, n = 1, and l2 + m2 + n2 = 1, it  follows that in the disturbed motion 
n - 1 is of second order. Let the velocity of the liquid at (x, y, z )  be (u, v, w), where 
again u, v, w are small. Then, neglecting the gravitational body force in the 

(2.1) 
liquid and writing 

p = pP + ipQ2(x2 + y2), 

where p is the pressure, we have, following Proudman (1916). 

au a p  -+252u= av --, ap 
at a Y  at ax ) 

-- 2Rv= -- 

aw a p  au av aw 
at ax ax ay a Z  
_ -  - -- -+-+- = 0. 

Here and subsequently we neglect all second-order quantities. 
In  order to study the stability of the equilibrium position, we now assume that 

I ,  m, u, v, w, P are each proportional to esi, where s is a constant. The coefficient 
of esl in each case is denoted by a suffix s, so that for example 

(2.3) 

The method is then to determine the motion of the liquid due to the perturbation 
of the casing and the reaction of the liquid on the motion of the casing. It is found 
that the assumption is only justified if s satisfies a certain transcendental equation, 
and the condition of stability is that no roots of this equation should have positive 
real parts. 

u(z, y7 z, t) = U,(G y, 2,s) est. 

I n  terms of s, equations (2 .2)  reduce to 

The condition on any surface F(z,  y, z, t) = 0 bounding the liquid is that 

aF aF aF aF 
-+u-+v-+w- = 0 when F = 0, 
at ax ay a Z  
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since it always consists of the same particles of liquid. Further, the coordinates 
of any point satisfy 

z’ = z+lx+my. (2.7) 

The two formulae (2.5) and (2.7) are now applied to the plane and curved 
boundaries of the liquid. First, since the equations to the plane faces of the 
cavities are x’ = h & c, it follows that 

w, = -s(Z,x+m,y) when z’ = h k c .  (2.8) 

Secondly, the curved part of the cavity is distant a from 02‘; and hence, for any 
point on it, 

a2 + 2’2 = 2 2  + y2 + 22, 

x2 + y2 - 21xx - 2myx - a2 = 0. 1.e. (2.9) 

usx + v,y = sz(Z,x + m,y) when x2 + y2 = a2. (2.10) 

The boundary condition is therefore 

Thirdly, the pressure is constant on the free boundary, which in equilibrium is 
distant b from 02’. Hence, from (2.1), the boundary condition is 

spS+ Q2(u,x+v,y) = 0 when x2+y2 = b2. (2.11) 

The inner boundary is not exactly a cylinder, and if necessary its equation may be 
found in terms of P. Let the distance of any point on it from Oz’ be b + 7‘. Then 

(b + v ‘ ) ~  + zf2 = x2 +y2 + x2 ,  

whence, from (2.6) and (2.7), 

bQ2q‘ = - P - Q2(Zx +my), (2.12) 

the right-hand side being evaluated at  x2 + y2 = b2. 

defined by 

and which satisfies the same equation as P,. We have, writing 

These boundary conditions may be expressed in terms of a new variable Q,, 

(2.13) Q, = P,-s2z(l,x+m 5 ,  y) 

rcos6 = x, rsin0 = y, 

(2.14) 

whenz = h k c ,  

aQ, aQs 
ar a6 sr - + 2Q - = - Zsza(Z, cos 6 + m, sin 6 )  (s2 + 2Q2) + 251s2za(Z, sin 0 - m, coa 0) 

when r = a, and 
(2.15) 

aQ, aQ, sr - + 251 - - s(s2 + 4Q2) Q, = s3zb(s2 + 3Q2) ( I ,  cos 6 + m, sin 0) 
ar 26 

+2Q2s3zb(l,sin0-mscos6) (2.16) 
when r = b. 
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3. The motion of the liquid 
The boundary conditions suggest that we look for solutions of the differential 

equation (2.4) satisfied by Q, which are proportional to C O S ~ ,  sin8. The most 
general solution of this form is 

&, = ~Ck(Ak(r )cos8+Bk(r ) s in8)cosk ( z -h+c) ,  (3.1) 
k 

where the summation is over a range of values of k to be determined, c k  are 
constants introduced for convenience, and &(?), Bk(r) are Bessel's functions of 
order one with argument ah. There are other solutions of (2.4), but none of them 
can depend on I?,, m,, nor can they contribute to the couple exerted by the liquid 
on the casing of the top. 

From (2.14) it follows that 
7r k = 0 or k =-(2j+1),  2c ( 3 4  

We now expand z as a Fourier cosine series in the range I t -c  < z < h+c,  
where j is a positive integer including zero. 

obtaining 

on setting C, = h and c k  = -2(ck2)-l when k $: 0. Substituting (3.1) and (3.3) 
into (2.15), we find that when r = a 

(3.5) 
- 2aAk+su- dBk = 2as2QZ,-2as(s2+2Q2)m,, 

dr 

i.e. (SU2-2iQ) (Ak+iBk) = -%S(S+ifi) (8-2iQ) ( t s + ~ W Z s ) .  (3.6) 

Similarly, when r = b, 

(,a@$ - 2ifp - s(s2 + 4Q2) (Ak + iBk) = - bs2(8 - 2iQ) (6 + in)' (I?, + ik2,). 

(3.7) 

Ao+iBo = (Zs+im8) ( X o r + Z o / r ) ,  (3-8) 

1 
First consider the special case when k = 0. Here 

where X,, 2, are independent of r .  On substituting into (3.6) and (3.7)' it is found, 
after some algebra, that 

2s2ub2(s + iQ)2 
X,a + z,/u = - 2m(s + iQ) + 

+ iQ;Zj2f, (S 2 + a2- 2iQs). (3.9) 

This is the only combination of X ,  and Zo needed in the argument. 
Next consider the general case k =i= 0. Write 

(3.10) 
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where xk, Z, are constants and J ,  Y are Bessel’s functions of the first and second 
kind with real argument. Let us also write 

xkJO(akr) + Z,YO(akr) = %o(akr). (3.11) 

Then the boundary conditions become 

I asbR2Vo(akb) - (s + ZiQ) (82 - 2iQs + QZ)%?&kb) = bsys - 2iR) (8 

asuVo(aka) - (s + 2iQ) %?,(aka) = - 2sa(s + iR) (8 - 2iR). 
(3.12) 

4. The couple on the casing 
In this section we calculate the couple on the casing exerted by the motion of 

the liquid described in the previous section. Contributions to the couple come 
from the curved surface and the plane parts of the cavity, and we shall consider 
them separately. The pressure in the liquid is 

p = ~ p Q 2 ( x 2 + y 2 ) - ~ p R 2 b 2 + ~ ) o + p P ,  (4.1) 
where po is the constant pressure in the air space (r’ < b).  

Let the components of the couple exerted on the curved surface be (Ec, 4, G,) 
referred to Oxyz and (EL, Pi, Gi) referred to Ox’y’z’. Then GA = 0; and, since all 
other components are first order, 

E, = E;, Fc = F;. (4.2) 

Now 
a (4.3) 

where the integralistakenover the curved surface r’ = a, Iz’-hl < c. From (4.1) 
and (2.9), p = p P  +pQ2(Zx’z’ +my’z’) + const. on this surface, and therefore 

{P + Ra(1x’z’ + my‘z’)) z ‘ ( d  + iy’) dS‘. 
a (4.4) 

Substituting from (3.1), (3.9), (3.10) and dropping the primes, we get 

( E ~ +  ’ 8 ) s  = 8 i p n a ~ ( s 2  + ~ 2 )  - 2impca2h2(s + i ~ ) 2  + impac CiV,(aka) 
cn 

1, + im, j = O  

The couple exerted by the liquid on the plane faces of the cavity may be found 
on the assumption that the liquid extends from r’ = b to r’ = a. This is not 
strictly correct, of course, for the inner boundary of the liquid is r’ = b + q‘, where 
7’ is defined in (2.12). However, since the pressure perturbation in b <: r’ < b + q’ 
is first-order, the couple exerted on that part of the plane faces is of second-order 
and negligible. 

Relative to Ody‘z’ ,  let the components of the couple exerted on the plane 
face z’ = h+c  be (E;, P;, 0). Then 
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Again the primes may be dropped. After some reduction it is found that 

(E++iF+)s = inp C, r ~ ~ % ' ~ ( a k r )  dr - 4ip7r(a4 - b4) (h + c)  (s2+ 5 2 2 )  
1, + im, j = O  b 

+ inph lbar2(X,r + Z0/r)  dr. (4.7) 

Similarly, if the couple exerted by the liquid on the plane face x' = h - c  is 
(EL, FL, 0) ,  then 

- inph/*ar2(Xor + Z&) dr.  (4.8) 

1 
Now J;rW,(akr) dr = a2k2 __ [2rY1(akr) - akrvo(akr)];,  (4.9) 

and we may use the boundary conditions (3 .4)  to eliminate Vo(akb) and %,(aka). 
Hence finally, if F ,  G are the components of the couple about Ox, Oy, we have, 

adding (4.5), (4.7) and (4.8), 

A partial check on the validity of this rather complicated expression is obtained 

(4.11) 
by setting b = a. Then 

%',(aka) = %?,(akb) = -a(# + Q2)  

from (3.12).  On substituting (4.11) into (4.10) and noting that 

m 

2 c; = QC2,  
3-0 

it  follows that F, + iG, = 0, as would be expected because the cavity is empty. 

5. The motion of the top 
Let H,, H, be the moments, about Ox, Oy respectively, of the rate of change of 

the momentum of the casing of the top, and let T ,  T, L be the principal moments 
of inertia of the casing about 0. Then from dynamical considerations, 

H, = T(% + 2 n i -  Q2m) - QL(l- Qm), 

H, = T(Z- 2Q~k - Q21) + QL(h + Ql).  (5.1) } 
The disturbing couple consists of two parts. First, there is a contribution from the 
liquid in the cavity which has been calculated in the preceding section. Secondly, 



Stability of a spinning top containing liquid 585 

there is a contribution from the gravitational forces on the casing, their effect on 
the liquid being neglected. The equations of motion of the casing are therefore 

H, = E-Mgdm,  H, = F + M g d l ,  (5.2) 

where M is the mass of the casing and d the distance of its centre of gravity from 0. 
These equations may be combined to give 

Q2L2 

4T 
(Z,+im,) [T(s+iQ)2-ilRL(s+iQ)] = -&+im,) - i (E,+iC),  (5.3) 

where for convenience we have set 

4Mg d T  = L2Q2P. (5.4) 

It is noted that the condition for the stability of the empty top is B < 1. On 
substituting for E, + iF, from (4 .  lo), 1, + im, cancels throughout and we obtain 
an equation for s in terms of the physical properties of the top. The equation must 
be satisfied if the assumption concerning the nature of the motion made in $ 2  
(i.e. 1 ,  mcc est), is to be justified. Corresponding to the roots of this equation are 
the normal modes of the hydrodynamic-dynamic system, which is stable 
therefore only if in none of the roots of the equation is 9 { s }  > 0. On writing 
s = in( 1 + 7), the equation for 7 becomes 

where a2 = (3 - T )  (1 +7) / (  1 - ~ ) 2 ,  and k, C,, are defined in (3.2) and (3.3). 
Further, in (5 .5) ,  

g1(akr)  = X,J,(akr) +Z,Y,(akr), (5.6) 
where from (3.12) 

(5.7) I X,{aka( 1 - 7) Jo(aka) + (1 + 7 )  J,(aka)) 

+ Z , { a k ~ (  1 - 7 )  &(aka) + (1  + 7) Y1(aka)} = - 2aQ2(3 - 7) (1 - 7), 

X,{akb( 1 - 7 )  Jo(akb) - (1  + 7) (2 - 47 + 7') J,(akb)) 

+ Z,{akb( 1 - 7 )  Yo(akb) - (1  + T )  (2 - 47 + 7') Y,(akb)} 

= bQ272( 3 - 7 )  (1  - 7)'. 

It is noted that (5.5) is a real equation for 7, and hence the roots are either real or 
are complex conjugates. The condition for stability is therefore that the roots 
are all real. Further, g1(akr)  is regular qua function of 7 ,  except at  a discrete set 
of poles which we can expect to be real. Otherwise the motion of the liquid would 
be unstable if the casing were fixed. In  numerical calculations by Dr D. C. Gille~ 
of the Scientific Computing Service, the poles of X,, 2, found were all real. 

A complete discussion of (5.5) would be exceedingly complicated in view of the 
number of parameters, and here we shall restrict attention only to the stability 
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of a heavy top with a small cavity. In  fact a system of this kind is necessary to 
justify the neglect of the gravitational forces on the liquid but not on the casing. 
In  this special case the right-hand side of (5.5) is small except at the poles of 
X,, 2, and when b272 + ~ ~ ( 7 ~  - 47 + 2) = 0. If a zero of (5.5) is not near a pole of 
the right-hand side, it may be neglected, so that the equation reduces to 

which has the solution 7 = (L/2T) [1& (1 - p$]. Hence, the top is unstable if 
P > 1 and none of the poles of the right-hand side of (5 .5 )  are near 

Now let us suppose that a root of (5 .5)  occurs near a pole 7 = 70 of the right- 
hand side. Near 7 = 70, (5.5) reduces to 

L2 
4T 7-70 

T72 - Lr + -P = Do + small terms, 

where D(70) is a small known parameter, the residue at the pole. Then if 

L2 
4T 

T7$-ho+-P & D, 

the root in question is 

(5.10) 

(5.11) 

- 

D 
T7: - L70 + L2P/4T ' 7 = T o +  

and is real since 7o is real. 

T~ 

An exception arises if (5.11) is not satisfied. Suppose, for example, that 
7nu. Then, near 7 = 7nu, (5 .5)  reduces to 

Hence, even i fB < 1, the top is unstable if D < 0 and 

Similarly, the top is unstable if D > 0 and 

(5.12) 

(5.13) 

Thus, if the empty top is stable, it is theoretically possible to render it unstable by 
introducing a small quantity of liquid. It is also possible to render an unstable top 
stable if /3- 1 is small, but the conditions are complicated and not of great 
interest. In  most cases the only poles which can lead to instability are those of 
X, ,  Z,, and the residues at these poles are always real and negative so that only 
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(5.12) is relevant. A slightly more convenient function than D for practical 
applications is R > 0, where pa6R2 + cD = 0. Thus, R is a positive real number 
which depends, like the position of the poles, only on cia, b/a. The theoretical 
condition (5.12) may thus be restated as follows. The top is unstable if any pole _ _  

(5.14) 

In  the calculations connected with (5.14), there are actually a double infinite 
set of poles to be considered, because to each integer j the determinant of the 
coefficients of X,, 2, in (5.7) and (5.8) has an inh i t e  number of zeroes. Fortu- 
nately, however, k can be absorbed into cia, and so it is only necessary to tabulate 
the poles withj  = 0. Tables from which the leading poles and the corresponding 
values of R may be determined for given values of b/a, c/{(2j + 1) a} have been 
computed on behalf of the author by Dr Gilles and some of them are displayed 
here (tables 1-5). In  the computation it was assumed that poles in which 7,, < 0, 
or 7* > 0.20 were not of great interest. The way in which the tables are to be used 

7 0  

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0-12 
0.14 
0-16 
0.18 
0.20 

TABLES 1 -5. 

C C C 

R (2j+ 1) a H (2 j+ l )  a R 
0.0 0.0 

0.995 
1.018 
1.042 
1.066 
1.091 
1.117 
1.144 
1.172 
1-201 
1.231 
1.262 

0.000 
0.058 
0.118 
0-181 
0.246 
0.313 
0.382 
0.484 
0.528 
0.604 
0.682 

0.478 
0.490 
0.503 
0.516 
0.530 
0.544 
0.559 
0-574 
0.590 
0.607 
0.624 

000 
070 
144 
223 
307 
396 
491 
591 
697 
809 
928 

0.310 
0.319 
0.327 
0.336 
0.345 
0.355 
0.364 
0.375 
0.385 
0-397 
0.408 

000 
019 
040 
062 
086 
111 
139 
168 
198 
231 
266 

Tables from which the leading poles T,, of Xk, 2, and the corresponding 
residues may be calculated aa functions of c/(2j+ l)a, b/a. 

TABLE 1. b = 0 

0.00 
0.02 
0.04 
0.06 
0.08 
0-10 
0.12 
0.14 
0.16 
0.18 
0.20 

C 

(2j+ 1) a 

0-947 
0.968 
0.991 
1.015 
1.039 
1-065 
1-092 
1.120 
1.149 
1.181 
1.214 

R 

0-000 
0.055 
0.113 
0.172 
0.234 
0.298 
0.365 
0.434 
0.506 
0-580 
0.657 

C 

t2j+ 1) a 

0-387 
0.398 
0.408 
0.419 
0.430 
0.442 
0.454 
0.467 
0.480 
0.494 
0.509 

R 
0.0 
000 
047 
096 
148 
202 
259 
319 
383 
450 
52 1 
597 

C 

(2j+ 1) a 

0.224 
0.230 
0.236 
0.242 
0-249 
0.256 
0-263 
0.271 
0.279 
0.287 
0.295 

R 
0.0 
000 
010 
020 
031 
044 
057 
07 1 
086 
103 
121 
140 

TABLE 2. bZ/aa = 0.20 
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7 0  

0.00 
0-02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 

c 

( m a  

0.842 
0.861 
0.881 
0.901 
0.923 
0.945 
0.969 
0.994 
1.020 
1.048 
1-077 

c 

R (2j+ 1) a 

0-000 
0-047 
0.097 
0.148 
0.201 
0.256 
0-314 
0.374 
0.437 
0.503 
0.572 

TABLE 3. 

0.281 
0.288 
0.296 
0.304 
0.312 
0.320 
0.329 
0.338 
0.348 
0.358 
0.369 

bz/aa = 0.40 

R 
0.0 
000 
023 
046 
07 1 
098 
125 
154 
185 
218 
252 
289 

c 

(2j+ 1) a 

0.154 
0.158 
0.162 
0.166 
0.171 
0.176 
0.181 
0-186 
0.191 
0.197 
0.203 

R 
0.00 
000 
039 
081 
127 
177 
231 
289 
352 
419 
492 
57 1 

C 

7 0  

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 

(2j+ 1) a 

0-697 
0.712 
0.728 
0-744 
0.762 
0.780 
0.799 
0.819 
0.840 
0.862 
0.886 

c 

R (2j+ 1) a R 
0.0 

0.000 0.182 0000 
0.035 0.186 0080 
0-07 1 0.191 0164 
0.109 0.196 0252 
0.149 0.202 0345 
0.190 0.207 0444 
0.233 0.213 0547 
0.278 0.219 0657 
0.326 0.225 0773 
0.375 0-232 0896 
0.427 0.239 1027 

TABLE 4. b2/a2 = 0.60 

c 

(2j+ 1) a 

0.096 
0.098 
0.101 
0-104 
0.107 
0.110 
0.113 
0.116 
0.119 
0.123 
0.126 

R 
0.00 
000 
012 
025 
040 
055 
072 
09 1 
111 
132 
155 
180 

70 

0.00 
0.02 
0-04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 

c 

( 2 j  + 1) a 

0.496 
0.506 
0.517 
0.529 
0.541 
0.553 
0.566 
0.580 
0.594 
0.609 
0.625 

C 

R (2j+ 1) a R 
0.00 

0.000 0.088 000 
0.019 0.091 014 
0.039 0.093 028 
0.060 0.096 043 
0.08 1 0.098 059 
0.104 0.101 07 7 
0.127 0- 104 094 
0.152 0.107 113 
0.178 0.110 134 
0.205 0.113 155 
0.234 0.117 178 

TABLE 5. b2/az = 0.80 

C 

(2j+ 1) a 

0.045 
0.047 
0.048 
0.049 
0.050 
0.052 
0.053 
0.055 
0.057 
0.058 
0.060 

R 
0.000 

000 
019 
040 
062 
087 
113 
142 
174 
207 
244 
284 

may be exemplified as follows. Suppose that Tnu = 0.1, C/U = 3, b2/u2 = 0.20. I n  
order to test for instability, we use the table in which b2/a2 = 0.20, and to  
begin with look for any poles in 0 < T~ < 0.2 with j = 0 and therefore with 
c/((2j+l)u} = 3. There are none. Next we try j = 1 so that c/{(2j+l)u} = 1. 
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There is a zero in the first table at 7 i 0-047 and at which R = 0.13. Thirdly, try 
j = 2, so that c/((2j + 1) a} = 0.600. There are no poles in 0 < 70 < 0.2. Further 
values o f j  may be considered in the same way. Having found all the relevant 70, 

the modified form of (5.14) may now be used to test for instability. 
In  the Appendix below, Prof. Ward describes some experiments which he has 

carried out to check the stability criterion in (5.14). It was observed that there 
was a range of filling ratios on either side of the filling ratio, which corresponded 
to the theoretical value of principal mode of instability for which the top was 
violently unstable. However, this range corresponds to a stability criterion 

(5.15) 

instead of (5.14) as required by the theory. Possible reasons for this discrepancy 
are discussed by Ward, but without positive conclusions. In  any practical 
application it may be wiser at this stage to use (5.15) instead of (5.14), but it must 
be admitted that the supporting evidence is not sufficient to be convincing. 

Only one other theoretical mode of instability could be detected with certainty 
in Ward's experiments, which may possibly have been due to the difficulty of 
designing an apparatus both strong enough to withstand the large forces at the 
principal mode of instability and yet sensitive enough to show up the weak 
secondary modes. 
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A P P E N D I X  

B Y  a. N. W A R D  

In  order to test Prof. Stewartson's theory of the stability of a rotating cylindrical 
shell which is partially filled with liquid, experiments were made with a constant- 
speed gyrostat. The rotor had a cavity 19 in. in diameter and 38 in. long, and was 
supported by two ball races mounted in a cage. The rotor was driven through 
a flexible coupling by a small 3-phase induction motor which was also mounted 
in the cage, and was fed from a variable frequency alternator, the electrical con- 
uexions being through some special woven copper wire of great flexibility. The 
cage was connected by gymbal bearings to a comparatively massive support, the 
inner gymbal ring having small lead weights attached so that the equivalent 
moments of inertia of the system were the same about both gymbal axes. The 
cage was adjustable in the inner gymbal and was positioned in such a way that the 
centre of mass of the whole system (without liquid) coincided with the centre of 
rotation, thus making the system into a gyrostat, and in this state the moment of 
inertia about the gymbal axes was 8.951b. in.2. The equivalent moment of inertia 
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of the rotating parts about the axis of symmetry was inferred from a dynamic 
experiment in which the frequencies of nutation and rotation were measured by 
stroboscopic means: the ratio of these frequencies was 0.112, from which it 
follows that the required equivalent moment of inertia was 

0-1 12 x 8.95 = 1.002 lb. in.2. 

The frequency of precession was very small, being less than 1 cycle/min at a rotor 
speed of 6000r.p.m. with the cavity full of liquid, which was the state of maximum 
unbalance. 

The liquid used for the experiment was a mixture of light lubricating oil and 
liquid paraffin, which had a kinematic viscosity of 23.9 centistokes at 70 O F  and 
12.8 centistokes at 100 O F ,  and 47.5 g of this liquid were required to fill the cavity 
completely. The experimental procedure was to weigh the rotor plus any residual 
liquid, determine the mass of the residual liquid by subtracting the weight of the 
empty rotor, and then add the liquid 1 cm3 at a time, observing the stability or 
instability after each addition. To make quantitative estimates of the instability, 
use was made of the fact that a light far up in the laboratory roof was reflected 
conveniently in the cap of the upper rotor bearings, and that this reflexion 
appeared to trace out a small circle whose diameter was proportional to the ampli- 
tude of the nutational motion. This circle was observed through a slot, cut in thin 
metal sheet, which was Q in. wide over half its length and t in.  wide over the other 
half, and by moving this slot along its length, and measuring the time taken for 
the circle to increase in diameter from just filling the narrow portion of the slot to 
just filling the wider portion, the rate of increase of the amplitude of the oscillation 
could be determined. This rather crude but effective method of instrumentation 
proved to be most convenient in use; precautions were taken to ensure that the 
relative positions of the slot, the gyrostat, and the observer’s eye were maintained 
during an observation. In  this way observations of instability were made with 
a rotor speed of 6000 r.p.m., this being considered to be the highest speed at which 
it was desirable to run the gyrostat. Even at this speed, the violent instabilities 
at  resonance and in the subsequent tests at large amplitudes, mentioned below, 
proved to be too much for the gymbal bearings, which suffered some damage, and 
also for the rotor bearings, which were thrown slightly out of alignment. 

The results of the tests are shown in figure 1, where the reciprocal of the time to 
double the amplitude (for small amplitudes) is plotted against the filling-ratio. 
In  the notation of this paper, when 

nutational frequency 
7% = rotational frequency 

n = number of waves radially, 

= 0.112, 

j + 4 = number of waves axially, 

the theoretical filling-ratios (1 - b2/a2) for resonance are shown in table 6. 
It will be seen from figure 1 that the main resonance (n , j )  = ( 1 , l )  at filling- 

ratio 0.66, and the second resonance (1,2) at filling-ratio 0.23 can be detected with 
certainty, and that the experimental values of the filling-ratio agree well with the 
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theoretical predictions. Other minor resonances appear to occur, but their 
positions do not agree with any of the filling-ratios in table 6, and it is possible 
that these resonances may be spurious. However, there is no doubt about the 
existence of the main resonance at filling-ratio 0.66, and the results at and near 
this resonance can be used to rest the theoretical predictions for the range of 
filling-ratios in which instability occurs. 

Filling ratio 
FIGURE 1. Experimental results. Filling ratio against reciprocal of time (in seconds) 

for amplitude to be doubled, at rotor speed of 6000 r.p.m. 

n 
r 3 

h 

j 1 2 3 
- - - 0 

1 0.66 
2 0.23 
3 0.14 0.78 - 
4 0.10 0.60 0.92 
5 0.08 0.50 0.83 

TABLE 6 

- - 
- - 

The limits of filling-ratio for instability are very vague in figure 1, but it seems 
that the gyrostat is definitely unstable between filling-ratios of 0.63 and 0-70. 
If we define a number A by 

then the theoretical criterion given in equation (5.14) becomes - 1 < A < 1 for 
instability. In  the present case, the values of A corresponding to the filling-ratios 
0.63 and 0.70 are respectively 2.7 and - 3.9, so the experimental range of A for 
instability is - 3.9 < A < 2.7, which is considerably greater than the theoretical 
range. 

It is interesting to speculate on possible reasons for this disagreement. It seems 
that there are four major factors which would affect the motion and which are 
neglected in the present theory, namely, the effect of gravity on the liquid filling, 
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the displacement of the axis of rotation from the axis of the cylinder, the effect 
of non-linear terms, and the effect of friction in the gymbal bearings. As to the 
effect of gravity, some qualitative experiments at lower rotational speeds (4000 
and 5000r.p.m.) showed that it was appreciable, but the ranges of instability 
were smaller at the lower rotational speeds, so the effect will not provide an 
explanation for the discrepancy between the theory and experiment. The effect of 
the second factor should be small provided that displacement of the axis of 
symmetry is kept small, and in the experiments the axis of symmetry never made 
an initial angle of more than about 3" with the axis of nutation (which was 
approximately vertical in all tests), so the resultant axis of rotation never made 
an initial angle of more than about 0.3" with the axis of symmetry; nevertheless, 
the extra inertia forces might have been significant, and to test for this, some large 
initial displacements in nutation were applied. It was found that the range of 
instability was increased by doing this, and in fact the gyrostat could be made 
unstable for almost all filling-ratios tested by giving it a sufficiently violent initial 
impulse. Unfortunately these tests have not been made systematically owing to 
the bearing failures described above. The effects of non-linearities are difficult to 
estimate and must play their part in the increased instability a t  large displace- 
ments noted above; it is difficult to believe that they are of great importance for 
the small displacements used in the quantitative tests. The fourth possibility is 
that friction in the gymbal bearings added an appreciable amount of instability 
to the system. The gymbal bearings were hard conical pivots bearing on ball 
races; although such bearings leave something to be desired from the fi.ictiona1 
point of view, they were adopted to withstand the large forces which were antici- 
pated at the main resonance, and even then they were damaged. Friction in 
these bearings would be expected to be de-stabilizing, and the fact that the 
oscillations were never damped at any filling-ratio might lend support to the 
view that friction there was the cause of the disagreement between the theoretical 
and experimental ranges of instability; however, the theory indicates that the 
liquid filling should never give rise to damping of the oscillations, and the results 
for small filling-ratios show that any de-stabilization caused by bearing friction 
must have been very small and unlikely to produce the comparatively large 
effects under discussion. 
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